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Mapping the Human Body Across Scales: Letter of Intent Recap 
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● Our proposal brings together an international team of researchers to 
map one of science’s last great frontiers: the human body

● How do our molecules and cells collaborate to make a working body?

● Traditional maps are flat and static, but the human body is a complex 
3D structure changing dynamically through time

● To map the body in 4D, we will use the latest techniques in 
microscopy ( from X-Rays to electron beams to lasers) and genomics 
(thanks to the single cell revolution)



Mapping the Human Body Across Scales: Letter of Intent Recap 
1/2

● We will discover new ways of categorising and interpreting data at 
different scales

● We want to make an atlas of the human body that is as useful as 
Google Maps, allowing the user to zoom in from organ to tissue to cell 
to molecule, at each level answering questions about how these 
structures change in development and disease

● Our multiscale atlas promises to change the future of being 
human



Interconnected research areas

● Data visualisation

● Multiscale imaging

● From cells to molecules (anatomical structure > molecular ID/function)

● Studying mechanisms in model systems

● Computation at every level



Please add your perspective and what you hope to 
bring to this project to the slides below



Katy Börner
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Define Human Reference Atlas

The Human Reference Atlas (HRA) 
1. defines the 3D space and shape of anatomical structures and cell types that 

are of biomedical relevance plus the biomarkers used to characterize them. 
Anatomical structures, cell types and biomarkers are validated and 
represented in/added to ontologies (Uberon/FMA, CL, HGNC).

2. defines how new datasets can be mapped to the HRA, e.g., spatially using the 
Visible Human CCF or Vasculature CCF (or both, see next slide), via ASCT+B 
ontology terms/IDs, or via gene expression data as in Azimuth.

3. it is

• authoritative (there exists expert agreement and it was validated by 
data),

• computable (supports API queries, UIs),

• published as LOD (connected to gene, disease, and other ontologies 
and data),

• open (anyone can use the HRA data and code), and

• continuously evolving (e.g., as new technologies become available).

https://www.nature.com/articles/s41556-021-00788-6 

https://www.nature.com/articles/s41556-021-00788-6


Constructing a Human Reference Atlas



Constructing a Human Reference Atlas - Together!



VHP F Spleen

White pulp of spleen



https://hubmapconsortium.github.io/ccf/pages/ccf-3d-refer
ence-library.html (NLM VH organs)
https://community.brain-map.org/t/allen-human-reference-a
tlas-3d-2020-new/ (brain)
https://www3.cs.stonybrook.edu/~ari/ (male colon)

https://hubmapconsortium.github.io/ccf/pages/ccf-anatomi
cal-structures.html 

https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html
https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html
https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405
https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405
https://www3.cs.stonybrook.edu/~ari/
https://hubmapconsortium.github.io/ccf/pages/ccf-anatomical-structures.html
https://hubmapconsortium.github.io/ccf/pages/ccf-anatomical-structures.html


2D FTUs: Small        Medium               Large



Construct a Human Reference Atlas
9 references and 1,036 cell types

>   12,000 datasets uploaded and mapped from the community
> 187,000,000 cells uploaded and mapped from the community
 

https://azimuth.hubmapconsortium.org 

https://azimuth.hubmapconsortium.org


New ATLAS publications 

New ATLAS datasets

OMAPs

Azimuth 
Maps

2D/3D Maps
& Ontology
Crosswalks

HRA Validation/
Expansion

BF – Proteoforms
BL – Lipids
BM – Metabolites 



Using the  Human 
Reference Atlas 
 



https://hubmapconsortium.github.io/ccf-ui/rui/

CCF Registration User Interface (RUI)

bioRxiv doi: 10.1101/2021.12.30.474265 

https://hubmapconsortium.github.io/ccf-ui/rui/


CCF Exploration User Interface (EUI)

 

https://portal.hubmapconsortium.org/ccf-eui bioRxiv doi: 10.1101/2021.12.30.474265 

https://portal.hubmapconsortium.org/ccf-eui




http://vitessce.io https://rdcu.be/cNlvp 

http://vitessce.io
https://urldefense.proofpoint.com/v2/url?u=https-3A__rdcu.be_cNlvp&d=DwMFAg&c=WO-RGvefibhHBZq3fL85hQ&r=-zahbihG7P2H0fiPo3RTqce9mFyFku-NJy5aRYNyUSA&m=_y6O4hDzfIlsHah_oz8WNOk-Bb_qoy0B6djOxbYjKXQW5bUJqrsL9HKDz_qlmTII&s=cN8W-UDeu5hb2IZW03Oe3qRux7vyl1AJWsX-bbKZxTM&e=


APIs: Accessing the Human Reference Atlas 

Indiana U, Stanford U, and EBI are collaborating closely on using Linked Open Data/Semantic Web Standards in support of 

ontology development and reasoning. Linked open data compatible with the Semantic Web is used as the ground truth. The 

CCF.OWL is published on Bioportal, https://bioportal.bioontology.org/ontologies/CCF/ 

All CCF UIs (e.g., RUI, EUI, ASCT+B Reporter) and APIs are using the CCF.OWL 1.8 data (2.0 coming in June, alpha available 

now). Queries can be expressed in SPARQL and exposed as standard HTTP APIs to support a whole ecosystem of collaborative 

and compatible APIs, libraries, UIs.

ASCT+B API Links:

● API Endpoint (includes interactive documentation): https://asctb-api.herokuapp.com

● API Documentation: https://hubmapconsortium.github.io/ccf-asct-reporter/docs/api 

● OpenAPI specification: https://asctb-api.herokuapp.com/asctb-api-spec.yaml 

CCF-API Links:

● API Endpoint (includes interactive documentation): https://ccf-api.hubmapconsortium.org  

● API Documentation and OpenAPI specification: https://ccf-api.hubmapconsortium.org 

● API Database backend is n3.js: https://github.com/rdfjs/N3.js 

● Code to instantiate/use CCF Database: https://github.com/hubmapconsortium/ccf-ui/tree/main/projects/ccf-database 

● SPARQL Endpoint: https://ccf-api.hubmapconsortium.org/#/operations/sparql-post 

● Published Python, TypeScript, JavaScript, and Angular libraries are available via PyPi and NPM respectively

 

 

https://bioportal.bioontology.org/ontologies/CCF/
https://asctb-api.herokuapp.com/
https://hubmapconsortium.github.io/ccf-asct-reporter/docs/api
https://asctb-api.herokuapp.com/asctb-api-spec.yaml
https://ccf-api.hubmapconsortium.org/
https://ccf-api.hubmapconsortium.org/
https://github.com/rdfjs/N3.js
https://github.com/hubmapconsortium/ccf-ui/tree/main/projects/ccf-database
https://ccf-api.hubmapconsortium.org/#/operations/sparql-post


https://expand.iu.edu/browse/sice/cns/
courses/hubmap-visible-human-mooc  

Outreach/Training

https://expand.iu.edu/browse/sice/cns/courses/hubmap-visible-human-mooc
https://expand.iu.edu/browse/sice/cns/courses/hubmap-visible-human-mooc


Sarah Teichmann





Teichmann lab adventures in organ mapping



We want to put the pieces together for a full body atlas



Wish list
- 4D mapping: incorporating changes in time at short 

(physiological) and long (development / ageing) scales

- True 3D spatial transcriptomics - currently limited to slices. 
Larger samples in x, y and z. Cell/nucleus-level resolution

- Effective integration of data from spatial and single cell 
modalities (e.g. cell2location)

- Capturing cell characteristics (e.g. morphology) and linking this 
to molecular identity

- Going from molecular > cellular > tissue > organ scale



Nozomu Yachie



DNA Event Recording



Four pillars for DNA Event Recording



Lineage tracing by evolving DNA barcodes



With Masa Ema@Shiga Med & Seiya Mizuno@Tsukuba U



Simulating high-content cell lineage tracing

Konno+ 2022 Nature Biotechnology



1306 single cells

E11.5

Neurons

Endothelial
cells

Primitive 
erythroid

Osteoblast

Stromal 
cells

Connective tissue
progenitors

White blood 
cells

Cardiac muscle lineage
Stromal cells
Osteoblast
Neurons
White blood cells
Connective tissue 
progenitors
Yolk sac
Primitive erythroid
Endothelial cells
Myocytes

Cardiac 
muscle 
lineage

A very pilot lineage (E11.5)



Deep distributed computing framework

Konno+ 2022 Nature Biotechnology



Lineage estimation of 235 million sequences 

Konno+ 2022 Nature Biotechnology



The Human Embryo Simulator Consortium
An international ECR/MCR consortium.

The Human Embryo Simulator will have the ability to predict the outcome of multicellular 
developmental systems and will enable in silico experimentations of human development, 
revolutionizing stem cell and developmental biology.

The consortium will serve as a virtual, large, intellectual sandbox for international ECR/MCR leaders 
and their groups to understand and build biology together with this vision.

Leads
Nika Shakiba (UBC), Nozomu Yachie (UBC), Maria Abou Chakra (UToronto)
Advisory Board Members
Gary Bader (UToronto), Peter Zandstra (UBC), Magdalena Zernicka-Goetz (Caltech), James Glazier (Indiana 
U), Adriana Dawes (OSU), Hiroaki Kitano (Sony)
Cluster 1: Molecular and cellular systems
Experimental: Nozomu Yachie (UBC)*, Knut Woltjen (Kyoto U), Carl de Boer (UBC), Katie Galloway (MIT)
Computational: Geoffrey Schiebinger (UBC), Verônica A. Grieneisen (UCardiff), Adam MacLean (USC)
Cluster 2: Cell populations
Experimental: Nika Shakiba (UBC)*, Ivana Barbaric (USheffield), Samer Hussein (Laval U), Sadao Ota 
(UTokyo), Leonardo Morsut (UCSD)
Computational: Morgan Craig (UMontreal)*, Linus Schumacher (UEdinburgh), Berta Verd (UOxford)

Cluster 3: Developmental systems (tissues, embryogenesis, whole body, emergence)
Experimental: Jun Wu (UT Southwestern)*, Takanori Takebe (Cincinnati Children’s Hospital)*, Miki 
Ebisuya (EMBL Barcelona)*, Naoki Irie (UTokyo), Mo Ebrahimkhani (UPitt)
Computational: Ruth Baker (UOxford)*, Guillaume Blin (UEdinburgh), Dagmar Iber (ETH Zurich), Ruben 
Perez-Carrasco (ICL), Alex Fletcher (USheffield)
Cluster 4: Integrative simulation platforms
Maria Abou Chakra (UToronto)*, Alex Fletcher (USheffield)*, Satoru Okuda (Kanazawa U), Lutz Brusch 
(UDresden), Sidhartha Goyal (UToronto), Noemi Picco (USwansea)
Cluster 5: Ethics, legal and social implications of embryo simulation
Vardit Ravitsky (UToronto)





Aviv Regev
Note: As I will be able to attend only some of the sessions (I am 
solo with the kids this week!), I tried to include more material 
here, which I hope will be useful.



Learning the convolutions of the human body

Aviv Regev



genes

molecules

organ

physiology

The many “convolutions” of biology



Models can map between the levels

genes

...

tissue structure

physiology

evolution
...

...



genes

...

tissue structure

...

physiology

...

evolution

Models can decipher the mechanisms underlying the mapping



Goal: Build an atlas from cells to organs to body

Rood et al., Cell 2019: With John Marioni and Rahul Satija labs

Toward a Common Coordinate Framework for the Human Body



What is a Human Cell Atlas 1.0? Concepts

types / states positionstrajectories/transitions histological modules



Collection roadmap for the atlas

Anatomical sampling

Histological sampling

No of individuals

Number of cells 

Number of regions Coordinate framework

Reference

Sampling

Development and aging



Methods to build a Common Coordinate Framework for HCA

Support: HubMAP HIVE, BRAIN Initiative Satija, Regev, Marioni

4. Reconstructing an atlas from its features2. Approach 1: Map all to one template

3. Approach 2: Iteratively align and average1. Calculate best template



Mapping new datasets to a CCF reference

Support: HubMAP HIVE, BRAIN Initiative

Satija, Regev, Marioni

1. Generate set of 
airway-looking fractals

2. Train 3D-UNET on
synthetic data set

3. Transfer model on CT
    volumes of human airway
4. Detect branch points in
    human airway

Data set:
5 ultra-CT scans
of single lungs

Deep learning model IDs lunch branch points
Biancalani, Heimberg, Regev

Within modality mapping

Cross modality mapping



Algorithms are essential for building and using atlases

II. Define new experimental modalities

III. Enable new biological discoveries and concepts

I. Integrate, enhance and construct atlas 



II. Define new experimental modalities

III. Enable new biological discoveries and concepts

I. Integrate, enhance and construct atlas 

Algorithms are essential for building and using atlases



Integration addresses limitations of measurement methods

PROTEIN RNA



Atlas integration: molecules, cells, histology and anatomy 

Bianalanni, Scalia et al., Biorxiv 2020, Nature Methods 2021.



snRNA-Seq data is derived from imaged sections

3 ROIs, 160,000 nuclei, 22 cell subsets (Charles Vanderburg, Evan Macosko lab)

snRNA-seq 
from ROI

Bianalanni, Scalia et al., Biorxiv 2020, Nature Methods 2021.



Automated atlas integration with anatomy and histology 

Anatomical depth model (Lorenzo Buffoni)

Outcome: learned latent space where the point distance
represents the anatomical distance between slices

Anatomical label model (Aman Sanger, Ziqing Lu)

Outcome: A semantic segmentation
model to call main anatomical regions

Bianalanni, Scalia et al., Biorxiv 2020, Nature Methods 2021.



Tangram built anatomical, histological, cellular and molecular 
atlas of the somatomotor mouse cortex 

Neriman Tokcan

Anatomical region map
(+ Allen CCF3)

Cell density map
(+ Blue Brain Cell Atlas)

Cellular profiles
(+ Allen ISH)

Histology snRNA-Seq

Bianalanni, Scalia et al., Nature Methods 2021.



2. Can we map even if we have no spatial molecular measurements?

1. Can we profile live cells and organisms at genomic scale?



Challenge: comprehensive live profiling of cells and tissues

Comprehensive

Targeted

Non-destructiveDestructive

Koseki Kobayashi

“Omics” data Live-cell imaging with Raman 
microscopy

Fluorescent reporters



Koseki Kobayashi, in collaboration with Peter So, Tommaso Bianchalani and Jian Shu; Kobayashi et al, Biorxiv 2021

Raman microscopy: molecular “fingerprint” of live cells

Label-free, non-destructive measurement of vibrational energy levels of molecules 
at subcellular spatial resolution in live cells
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Raman2RNA (R2R): Train models to predict RNA profiles 
from Raman spectra of live cells

Koseki Kobayashi, in collaboration with Peter So, Tommaso Bianchalani and Jian Shu; Kobayashi et al, Biorxiv 2021



Raman2RNA (R2R) proof of concept in iPSC reprogramming

Koseki Kobayashi, in collaboration with Peter So, Tommaso Bianchalani and Jian Shu; Kobayashi et al, Biorxiv 2021



Raman spectra capture temporal progression 
analogous to RNA

scRNA-Seq, day 8-14Raman spectra, day 8-14

Koseki Kobayashi, in collaboration with Peter So, Tommaso Bianchalani and Jian Shu; Kobayashi et al, Biorxiv 2021



Agreement between single cell profiles measured by scRNA-Seq 
and predicted from Raman spectra by trained model 

Koseki Kobayashi, in collaboration with Peter So, Tommaso Bianchalani and Jian Shu; Kobayashi et al, Biorxiv 2021

Using brightfield instead of Raman gives poor results



Challenge: relate molecular profiles and histology / cell biology 
without spatial molecular measurements 

Charles Comiter, Eeshit Vaishnav



SCHAF: Adversarial autoencoder to generate scRNA profiles 
from histology without spatial molecular measurements 

Input: paired histology and single cell profiles (multiple tumors)

Translation: Encode with source domain encoder (e.g, histology tiles); 
decode with target domain decoder (eg scRNA-seq)

Model: Adverserial autoencoder (and within domain normalization) 

O
rig

in
al

In
fe

rr
ed

Squamous Cell 
Carcinoma

Metastatic Breast Cancer

Charles Comiter, Eeshit Vaishnav

Result: Predicted, spatial (tiled) scRNA-Seq atlas for an H&E



II. Define new experimental modalities

III. Enable new biological discoveries and concepts

Algorithms are essential for building and using atlases

I. Integrate, enhance and construct atlas 



DNA microscopy: optics-free imaging by chemical reaction

1. Encode proximity by 
Unique Event Identifiers

3. Decode image by inference2. Sequence

initiate solution iteratively update solve for position

Joshua Weinstein, Aviv Regev and Feng Zhang; bioRxiv 2018; Cell 2019



DNA microscopy of signatures and whole transcriptomes

4 genes (GFP and RFP lines co-culture) 20 cell type specific genes (10+10) Transcriptome

Joshua Weinstein, Aviv Regev and Feng Zhang; bioRxiv 2018; Cell 2019



Collect  
“compressed” 

data with existing 
technology

“Decompress” the 
data with algorithms

How to generate more data without a better instrument?

Using mathematics of: Random projections into low-dimensional space, 
random feature learning and compressed sensing (Johnson-Lindenstrauss 
lemma, Dasgupta and Gupta, Donoho, Candes, Tao, Eldar, etc)Brian Cleary, Cleary et al., Cell 2017



create image with abundance of 

100 proteins/RNAs

Existing method: MERFISH/MIBI/CODEX

create image with abundance of 

10,000 proteins/RNAs

Compressed version

..

Giesen, et. al. 2014; also see: Angelo et al., 2014

Use case: Same number of measurements; more information



Instead of individual genes, measure abundance of composite genes**

**Composite gene: a linear combination of 
abundances:

abundance of genei Mathematical
:

weight of genei in cg1  composite gene1 

Number of composite genes (m) much smaller than number of genes 
(g)

What does it mean to acquire compressed expression data?

The weights can be random (and can be binary) 

Johnson-Lindenstrauss Lemma; Indyk-Motwani Cleary et al., Cell 2017



Compressed measurements in the lab with composite in 
situ imaging (CISI)

Cleary et al., Biorxiv 2019, Nature Biotechnology 2021

• Find gene modules

• Find compositions that work well in simulation

• Fit gene module activities (spatially)

• Recover images for individual genes (decompress)

(1) scRNA-seq training 
data from ROI

(2) Composite imaging of ROI
(in situ)



Decompressed CISI measurements to map cell type and states

73

1000 microns

12 bisected coronal 
sections

Excitatory neurons

Endothelial / SMC

Inhibitory neurons

Oligodendrocyte / OPC

Astrocyte

Microglia

Validation image    
Recovered image  

Overlap

Cluster 
labels

Individual gene 
validation

• 180mm2, ~500,000 cells, 25x imaging 
• 37 genes, 11 compositions, 4 genes / 

composite
• Genes: 5 IEGs, 5 classical type markers, 27 

model driven
• 25x imaging; overall gain of 537-fold 

increase in efficiency  

Cleary et al., Nature Biotechnology 2021; with Evan Murray, Anu Sinha, Fei Chen, Broad/MIT



II. Define new experimental modalities

III. Enable new biological discoveries and concepts

Algorithms are essential for building and using atlases

I. Integrate, enhance and construct atlas 



Example: From cells to multi-cellular programs

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022

Tissue biology



DIALOGUE: Inferring multi-cellular programs

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022



Physical niches: MERFISH of the hypothalamic preoptic region 

Moffitt*, Mambah-Mukkut et al., Science 2018: Xiaowei Zhuang and Catherine Dulac labs

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022



Multi cellular programs: Coordinated and proximal

Excitatory neuron - inhibitory neuron MCPs (MERFISH, hypothalamus data)

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022



MCPs learned from ‘coarsed’ data can predict 
unseen neighbors

Learn MCPs from ‘coarse in silico dissociated’ data (~500 “in silico dissociated” cells; ~50-100µm2

Use learned MCP and expression of a cell to  predict expression of its neighbors in test data in radius of 15 or 500 
cells 

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022



Multicellular programs can be learned from single cell data

Tissue biology Single cell profiles

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022



An IBD-associated multi-cellular program across T cells, epithelial 
cells and macrophages learned from scRNA-seq

MCP2: UC associated

Enriched with “UC GWAS genes” (P < 1*10-5), eg: 
FCGR2A (macrophages), PRKCB (CD8 T), 
CCL20 (TA1 and TA2), SLC39A8 (TA2)
FOS (TA1, TA2, and macrophages), GPR65 (CD4 T),
ITLN1 (TA1) 

Livant Jerby, Jerby and Regev, Biorxiv 2020, Nature Biotechnology 2022



II. Define new experimental modalities

III. Enable new biological discoveries and concepts

Algorithms are essential for building and using atlases

I. Integrate, enhance and construct atlas 



Peter Lee
Hierarchical 

Phase-Contrast 
Tomography (HiP-CT)

To Create

The Human Organ Atlas
Peter.Lee@ucl.ac.uk



Hierarchical Phase-Contrast Tomography









Peter Zandstra
Note: As I will be able to attend only some of the sessions, I 
tried to include more material here, which I hope will be useful.



How does single cell 
fate map to tissue 

form and function? 

Can we program 
tissue fate and 

function?  

How do single cells 
make decisions? 

GRN modeling of single 
cell fate 



Input Processing Function

 GENE CIRCUITS CODE INFORMATION ON CELLULAR 
DECISION MAKING

Yachie-Kinoshita et al, Mol System Biol 2017
Ng. et al. Nature 2017
Lechnam et al. Cancer Cell 2016



IQCELL: PREDICTING THE EFFECT OF GENE 
PERTURBATIONS ON DEVELOPMENTAL TRAJECTORIES

https://gitlab.com/stemcellbioengineering/iqcellHeydari et al. PLOS Computational Biology 2022Ayako Yachie- Kinoshita

Tiam Heydari

Matthew Langley



NEXT STEPS:

High throughput data-driven modeling of Boolean GRNs can 
predict the gene-gene interactions and the effect of gene 
perturbation at the 'system-level'  

This system-level knowledge can lead to model informed 
intervention strategies for engineering development towards 
specific cell types

Now, we are looking at the effect of cell-cell communication on 
the intracellular GRNs dynamics with the aim of controlling the 
development of diverse multicellular tissues



GRN modeling of PSC 
differentiation

THREE INTEGRATED STRATEGIES TO PROGRAM TISSUE 
DEVELOPMENT

How does single cell 
fate map to tissue 

form and function? 

Can we program 
tissue fate and 

function?  





NODAL REGULATES A GASTRULATION AND NEURULATION SWITCH: 
CENTRO-SYMMETRIC PATTERNING

Tewary, M, et al. 2017. Development
Tewary, M, et al. 2019. PLOS Biology



HOW DOES THE EMBRYO BREAK SYMMETRY?



FROM ASYMMETRY TO SYMMETRY AS A FUNCTION OF SIZE

NEXT STEPS: GROWTH CONTROL AND SCALING



How does single cell 
fate map to tissue 

form and function? 

Can we program 
tissue fate and 

function?  

How do single cells 
make decisions? 



A MINIMIZED EXECUTABLE NETWORK MODEL OF EARLY HUMAN PSC FATE 
RESPONSES

Kaul et al  (https://www.biorxiv.org/content/10.1101/2020.10.06.327650v1)



CONNECTING NETWORK WIRING TO TISSUE-LIKE PATTERN FORMATION



3D tissue 
development



102

PLATFORM MOVES CELLS TOWARDS AN IN-VIVO LIKE AXIAL GERM 
LAYER ARRANGEMENT IN 3D 

MaxIP, 20x Air



A spatial-temporal molecular map of human thymus architecture

May 02, 2022 HOPE PI Meeting – Zandstra, Rossi, Levings, Subramaniam, Schiebinger 103

Goals
• Define spatial patterns of signaling 

and adhesion ligands that guide T 
lineage branch points

• Quantify and dissect neonatal 
thymic developmental niches at 
single cell and sub-cell resolution

• Screen stage-specific signals in 
vitro to guide lymphoid lineage 
commitment

LevingsRossi

CODEX imaging

Neonatal thymus

CITEseq

RNA

Protein



Spatial multiomics identifies key 
developmental niches in human thymus

May 02, 2022 HOPE PI Meeting – Zandstra, Rossi, Levings, Subramaniam, Schiebinger 104

• Using custom image analysis tools we cluster cells into proximity-based niches

• We describe heterogenous cortical niches defined by multiple macrophage subsets, 
perivascular cells, and thymocyte subsets

• These cell subset phenotypes are confirmed with CITEseq

Neighbourhood Clustering
Segmentation Cell Clustering



Key questions

May 02, 2022 HOPE PI Meeting – Zandstra, Rossi, Levings, Subramaniam, Schiebinger 105

1. Time? 

2. Learning and perturbation – how do we 
use the information to engineering 
“synthetic” tissue architecture?

3. What synthetic tissue do we want and 
what can we use it for? 



Next steps: Adding programmable design to 3-D tissue 
architecture



107

DESIGN OF HPSC-SPECIFIC DIGITAL TO ANALOG CONVERTER

Michaels et al. Nature Communications volume 10, 818 (2019) 
Xie et al. Science 2011 Sep 2;333(6047):1307-11. doi: 10.1126/science.1205527
Prochazka et al. Nat Commun . 2014 Oct 14;5:4729. doi: 10.1038/ncomms5729.
Prochazka and Michaels Manuscrit in Preparation (2022)





Jennifer Ma, PhD 
Zandstra lab, Donnelly 
Centre
University of Toronto



Gary Bader



Cell 
development 
simulation 
model

Maria Abou Chakra



Cell 
development 
simulation 
model

2D and 3D cell 
modeling



Cell diversity arises from a single cell



What controls cell diversification?

Environmental signals

Chromatin state

Genes 
transcription

Epigenetic effects

Directional/polarity cues 

Cell  
Adhesion

Cell-cell  
communication

Methylation

Histone modification
Chromatin looping

Gene interactions

Many intrinsic and extrinsic 
factors



Volumetric nanoscale imaging

https://bitesizebio.com/30796/three-dimensional-scanning-electron-microscopy-for-biology/

ATUM-SEM
automated tape
-collection 
ultramicrotomy

-Slices: 30-40nm 
limit
-easy staining
-slice alignment 
problems

-thin slices: 3-5nm 
possible
-isotropic voxels
-small volume due to 
milling time limits
-better

-15-50nm slices
-better z 
alignment

Mei Zhen



VEM data processing

https://bitesizebio.com/30796/three-dimensional-scanning-electron-microscopy-for-biology/



Ultrastructural mapping of the liver

● Generated at LTRI in September 
2020 to optimize staining methods

● 32x32x10um tissue derived from Rat 
liver lobule

● 4000x4000x219 pixels
● 8x8x50nm resolution
● 10.7GB in size

Ali Darbandi, Ben Mulcahy, Mei Zhen, Ronald 
Xie, Sonya MacParland



Ideas for discussion - what to include in the proposal?

Mapping the body: What scales and modes are missing/under-represented? (e.g. tissues)

What modes/perspectives exist and how should we integrate them?

Ecosystem analogy - cellular ecosystem, systems analysis, dynamic systems, etc.

How can we define ecosystem functions, like wound response? Analogy with the protein 
sequence world - network view. How are cellular ecosystems adaptable?

Cooperation to achieve goals e.g. the immune system, brain - could this influence society?

Interdisciplinary approach: which ones to include?

How do we map (define) a multi-scale system? parts, interactions, temporal behaviour - what 
else? E.g. Do we want to map response to perturbation?



Sid Goyal



Levels of abstraction - different models at different scales 

Protein folding

Reactions

Structure

Function

?



Can we develop models at different scales for cells, tissues, organs…

Cell types requires molecular 
underpinning

● Metabolic states [1]
● Genetic drivers [2]
● Epigenetic markers…

Clustering

[1] Jatav, BioRxiv 2021

[2] Freedman, BioRxiv 2022

Tissues requires coordination 
among its constituent cell types to 
define “tissue states”

Organs combine different tissues 
in functionally diverse ways

● Same tissue in different 
contexts, e.g. epithelial?

● Function specific tissues, 
like insulin producing cells, 
or common structures 
such as branching in 
lungs, kidneys and 
glands?

● Flux of cell types
● Dynamics of cell fate

Hydrodynamic theory of tissues?

??

Structure Function
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Spatiotemporal models of cell-cell signaling



Deconvolving the three sources of pulsing



Cell signaling: distance from wound, interventions



Spatial dimension reduction on spatial transcriptomics data



Top genes for each of the factors – many markers



Intrinsic vs extrinsic cell states and gene expression



Alignment: warping plus expression. Atlas?



Aligning four parallel slices of a breast cancer biopsy



Warping four slices in three dimensions with GPSA



Single 3D breast tumor; FN1 expression



Multigroup Gaussian Processes (MGGP)



Flexible, robust, structured, and interpretable statistical modeling is one key to 
multi-scale, multi-modality, multi-technology, and noncanonical mapping and 
atlassing of the human body.


